电力体制改革“手持型变压器变比组别测试仪”量身打造,品种齐全
新型电力系统是在确保我国能源战略转型和“双碳"目标实现的大背景下构建的现代化电力体系,是关系到我国经济发展、能源安全、环境保护和社会福祉的关键举措。国家能源局已明确新型电力系统“三步走"发展路径,即以2030年、2045年、2060年为重要时间节点,按照加速转型期、总体形成期和巩固完善期三阶段,为新型电力系统构建提供了明确思路。由此可见,加快构建新型电力系统,是能源电力领域一场广泛而深刻的系统性变革,将带来电力系统全环节和全形态革命性变革,对各行各业用能方式产生深远重大影响。相对于传统电力系统,新型电力系统除具备“清洁低碳、安全充裕、经济高效、供需协同、灵活智能"等五大核心特征外,还应包括“坚强可靠、聚合互联、多源互补、多网融合、开放包容"等五大基本特征,共同支撑我国电力系统不断向绿色环保、智慧灵活方向加速演进。对此,本文拟就这个问题试作阐述,以期能抛砖引玉。
一、概述(LYBBC-V电力体制改革“手持型变压器变比组别测试仪"量身打造,品种齐全)
在电力变压器的半成品、成品生产过程中,新安装的变压器投入运行之前以及根据国家电力部的预防性试验规程中,要求对运行的变压器定期进行匝数比或电压比测试。传统的变比电桥操作繁琐,读数不直观,且要进行必要的换算,测试结果只为一相变比的资料。本变压器变比组别测试仪克服了传统变比电桥测试的缺点,屏幕采用了大屏幕彩色液晶显示屏,具有中文菜单提示功能,操作简便直观,一次完成三相变比测试,测试速度快,准确度高。
二、安全措施(LYBBC-V电力体制改革“手持型变压器变比组别测试仪"量身打造,品种齐全)
1、使用本仪器前一定要认真阅读本说明书。
2、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。
3、仪器应避免剧烈振动。
4、对仪器的维修、护理和调整应由专业人员进行。
5、测试线夹的黄、绿、红分别对应变压器的A、B、C不要接错。
6、高、低压测试线不要接反。
7、测单相变压器时只使用黄色和绿色线夹,不要用错,不用的测试夹要悬空。
三、性能特点(LYBBC-V电力体制改革“手持型变压器变比组别测试仪"量身打造,品种齐全)
1、测试量程宽,*高可达10000。
2、测试速度快,10秒钟完成三相测试。
3、具有盲测功能,即在不知道高、低压联结方式时进行变比、组别测试。
4、具有角差测试功能。
5、Z形联接变压器测试。
6、具有CT变比测试功能。
7、高、低压两档电压自动输出,适应不同特点的试品测量。
8、不掉电时钟和日期显示,数据存储方式分为本机存储和U盘存储。
9、高、低压反接的保护功能。
10、变压器短路、匝间短路保护功能。
11、热敏打印机输出功能,快速、无声。
四、技术指标(LYBBC-V电力体制改革“手持型变压器变比组别测试仪"量身打造,品种齐全)
量程:0.9~10000
准确度:±(0.1%+2字)(500以下) ±(0.2%+2字)(500~2000)
±(0.3%+2字)(2000以上)
分辨率:0.9~9.9999(0.0001) 100~999.99(0.01) 10000及以上(1)
10~99.999(0.001) 1000~9999.9(0.1)
4、工作电源:AC220V±10% 50Hz
5、使用温度:-20℃~50℃
6、相对湿度:≤90%,不结露
五、面板及各功能键介绍(LYBBC-V电力体制改革“手持型变压器变比组别测试仪"量身打造,品种齐全)
宝贝
低压测试端:黄、绿、红3色接线座,分别为a、b、c三相,连接黑色电缆,电缆另一端有黄、绿、红3色夹钳,对应接被测变压器低电压侧的a、b、c三相。
高压测试端:黄、绿、红3色接线座,分别为A、B、C三相,连接红色电缆,电缆另一端有黄、绿、红3色夹钳,对应接被测变压器高电压侧的A、B、C三相。
显示屏:480×272点阵、65K色TFT彩色液晶,带LED背光,显示操作菜单和测试结果。
按键:操作仪器用。 “↑↓"为“上下"键:选择移动或修改数据;“←→"为“左右"键:选择移动或修改数据;“确认"键:确认当前操作;“取消"键:放弃当前操作。
串行通讯口:仪器升级用。
U盘接口:外接U盘用,存储仪器测量结果。
打印机:可打印测试结果。
:保护接地柱。
电源插座:是整机电源输入口,接220V、50Hz交流电源,插座带保险和开关。
六、LYBBC-V手持型变压器变比组别测试仪使用和操作
接线
根据被试变压器的情况正确联接测试线夹。
a、单相变压器:高压端电缆的黄、绿线夹接被测变压器高电压侧的接线端。
低压端电缆的黄、绿线夹接被测变压器低电压侧的接线端。
b、三相变压器:高压端电缆的黄、绿、红线夹接被测变压器高压侧的A、B、C。
低压端电缆的黄、绿、红线夹接被测变压器低压侧的a、b、c。
主菜单
所有接线接好以后,打开电源开关,仪器初始化后进入主菜单屏(见图二)。
此时显示仪器型号名称、系统运行时间、公司名称、仪器编号、软件版本号及功能选择菜单。
按“上下"键选择相应功能,按“确认"键进入所选功能。
变比测试
选择“变比测试"项后,按“确认"键进入“变比测试"屏(见图三)。在“变比测试"屏下按“取消"键返回“主菜单"屏。
三相测试:普通三相变压器测试。
单相测试:单相变压器、PT、CT测试。
Z 型测试:Z型变压器测试。
(1)三相测试
选择“三相测试"项后,按“确认"键进入三相测试屏(见图四)。在“三相测试"屏下按“取消"键返回上一屏。
盲测功能:在不知道高、低压联结方式及组别时可以准确测出变比和组别。
正常测试:正常输入高、低压联结方式后进行测试。
选择“盲测功能"项后,按“确认"键进入“盲测功能设置"屏(见图五)。在“盲测功能设置"屏下按“取消"键返回上一屏。
“电压值"、“分接"、“联接组"、“测量"为菜单选项,其右边所属各项为功能参数。“说明"部分是对所选功能的解释说明。当菜单选项被选中时,按“上下"键选择不同菜单功能,按“左右"键选择菜单选项所属功能参数,当菜单选项所属功能参数被选中时,按“上下"键修改参数,按“确认"键或“取消"键返回菜单选项。当选中“测量"选项时,按“确认"键开始按当前所设定的参数进行测量。
电压值:设定所测试品的额定高、低电压值。高、低电压值可以按实际电压值输入,也可以根据实际情况按实际比例关系输入。只有高、低电压值、调压比、额定分接位输入正确后,测试结果才可以正确计算出误差值。
分接:设定所测试品的调压比和额定分接位,对于没有分接位的试品,分接位输入00或01即可。
联结组:设定所测试品的联结方式和联结组别。对于联结方式,高压侧可以实现“Y→D→未知"之间的循环转换,Y表示星形联结,D表示三角形联结, “未知"表示不清楚高压侧联结方式,由仪器自动判断;低压侧可以实现“y→d→未知"之间的循环转换,y表示星形联结,d表示三角形联结,“未知"表示不清楚低压侧联结方式。当用户选择已知的联结方式后,仪器测量与显示按用户输入为准,当用户选择“未知"后,由仪器自动判断联结方式,如果高、低压侧的联结方式都选择“未知"时,测量结果不显示联结方式。对于联结组别,用户可按实际情况进行选择,如果联结组别未知,可选“自动",由仪器自动判断联结组别,在“盲测功能"菜单里,联结组别固定为“自动",不可改动。
测量:选择测量方式。
三相测试 根据设定的高、低压联结方式和联结组别,三相同时测量变比。
三相组别 只自动测量组别。
三相AB、三相BC、三相CA 根据设定的高、低压联结方式和联结组别,只针对所选相进行变比测量,此功能方便只针对某一相进行测量、检测,节约时间。
右侧六位数字为试品编号设置。
三相测试结果见图六。
继续测量:按设置参数继续测量。
打印:将测试结果进行打印。
保存:将测试结果保存到本机或U盘(*多保存100条)。
“正常测试"功能操作可参考“盲测功能"操作。
(2)单相测试
选择“单相测试"项后,按“确认"键进入“单相测试设置"屏(见图七)。在“单相测试设置"屏下按“取消"键返回上一屏。
“电压值"、“分接"、“编号"、“测量"为菜单选项,其右边所属各项为功能参数。“说明"部分是对所选功能的解释说明。当菜单选项被选中时,按“上下"键选择不同菜单功能,按“左右"键选择菜单选项所属功能参数,当菜单选项所属功能参数被选中时,按“上下"键修改参数,按“确认"键或“取消"键返回菜单选项。当选中“测量"选项时,按“确认"键开始按当前所设定的参数进行测量。
电压值:设定所测试品的额定高、低电压值。高、低电压值可以按实际电压值输入,也可以根据实际情况按实际比例关系输入。(注:CT变比测量时,认为是高低压电流值)。
分接:设定所测试品的调压比和额定分接位,对于没有分接位的试品,分接位输入00或01即可。
编号:设定所测试品编号。
测量:选择测量方式。
单相变压器 测量单相变压器时选择此项。
单相PT 测量单相PT时选择此项。
单相CT 测量单相CT时选择此项。
单相测试结果见图八。
继续测量:按设置参数继续测量。
打印:将测试结果进行打印。
保存:将测试结果保存到本机或U盘(*多保存100条)。
“Z型测试"功能操作可参考“盲测功能"操作。
存储查询
在“主菜单"屏下选中“存储查询"选项,按“确认"键进入“存储查询"屏(见图九)。在“存储查询"屏下按“左右"键进行不同存储信息的查询,按“确认"键打印当前存储信息,按“取消"键返回“主菜单"屏。
时钟设置
在“主菜单"屏下选中“时钟设置"选项,按“确认"键进入“时钟设置"屏(见图十)。在“时钟设置"屏下按“左右"键对要修改项进行选择,按“确认"键保存当前设置并返回“主菜单"屏,按“取消"键放弃当前设置并返回“主菜单"屏。(注:本时钟设置功能可根据闰年自动计算二月份的天数,并能根据所设置日期自动计算出星期几。)
厂家设置
此项为厂家设置项,需要密码,用户不能设置。
多源互补是新型电力系统的显著特征。传统电力体系主要依赖于煤炭、天然气等化石能源发电,容易受到资源限制和环境制约。而随着风光等新能源大规模开发,新型电力系统的能源来源变得更加多元化,并通过不同能源间优化组合,有效降低对单一能源的过度依赖,以达到相互补充和平衡,使得电力系统更具弹性和韧性,全面提升电力系统的可靠稳定性,更好适应不同地区的资源禀赋特点和抵御不同环境条件的影响。
构建新型电力系统、端牢能源“饭碗",关键在于深入推进能源生产变革,形成多源共济的能源供给方式。在能源生产端,传统化石能源垄断加速被多种非化石能源生产所替代,可再生清洁能源将逐步转变为主体,形成“水核风光氢"等不同清洁能源此增彼长发展局面,低密度的风光等新能源占比大幅提升,高密度的水核氢等清洁能源的重要性进一步凸显,形成“风光水火核生储"等多能互补一体化电力生产局面;在能源供给端,包括煤、油、气、核、新能源在内的多元化供应体系逐步形成,多元绿色低碳的能源供给形式成为主体,集中式远距离能源供给逐渐匹配分布式能源,能源电力就近消纳、就“地"取材将成为供给的主流,并借助“西电东送、北电南供"等途径,有效缓解我国能源资源逆向分布问题,保障能源供应安全可靠。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。