新型电力设备“变压器绕组变形综合试验仪”解析和详细介绍
浙江电力气象中心完成“浙江-伏羲"强对流气象大模型的训练与部署,并将强对流预警模块接入电力气象防灾减灾平台,正式上线强对流气象大模型。
据介绍,“浙江-伏羲"强对流气象大模型可实现1小时1次的预报更新频率,较传统气象预测6小时1次的频率有明显提升。在强对流天气来临前,该模型可提供未来3小时内间隔10分钟的超短期预报,以及未来24小时逐小时的预报,且单次预报运行效率相比目前业界比对中处于很好水平的欧洲中期天气预报中心提升超千倍,1分钟内即可完成未来24小时的完整预报。对比欧洲中期天气预报中心,“浙江-伏羲"对降水强对流气象信息逐小时的预测误差平均降低了5~15个百分点。
强对流气象大模型上线后,设备运维人员可实时查看杆塔、变电站、配电台区等的气象实况、强对流风险预报,以及任意设备未来24小时内每小时的强降水、雷击、大风与冰雹风险等级。电力气象中心可在灾害发生前24小时发布趋势预估报告,提前6小时发布高精度临近预警,为防灾减灾部署提供科学、精准、前瞻的决策依据。
强对流天气引发的强降水、大风、雷击等易导致输电线路风偏、跳闸,恶劣降雨条件下还可能出现洪涝等次生灾害,对电网安全构成严重威胁。据统计,浙江超50%的110千伏及以上线路跳闸事件由强对流天气伴随的雷击引发。浙江复杂的地形造成了“一山有四季,十里不同天"的情况,一旦出现强对流天气,预报难度更大。
“传统数值天气预报模型更新频率较低、预报时空分辨率不足,难以满足电网设备防灾的精细化预报需求。"浙江电力科学研究院电力气象专职周林帆介绍。2024年年底,浙江电科院联合复旦大学人工智能团队,开展“浙江-伏羲"强对流气象大模型的研发。团队基于复旦大学“伏羲"大模型框架,融合近三年浙江区域雷达回波、高分辨率陆面同化数据集等超7亿字节的数据量进行训练,结合输电、变电、配电等设备的承灾特性,实现电力设备风险的分级预警;针对强降水、雷电等关键影响因子,引入感知相似度损失函数优化策略,提升了模型在雷电、降水、风速等关键指标上的预测精度。
一、系统简介(RZBX-FR新型电力设备“变压器绕组变形综合试验仪"解析和详细介绍)
变压器绕组变形测试仪用于测试6kV及以上电压等级电力变压器及其它特殊用途的变压器,电力变压器在运行或者运输过程中不可避免地要遭受各种故障短路电流的冲击或者物理撞击,在短路电流产生的强大电动力作用下,变压器绕组可能失去稳定性,导致局部扭曲、鼓包或移位等长久变形现象,这将严重影响变压器的安全运行。按国家电力行业标准DL/T911-2004采用频率响应分析法测量变压器的绕组变形,是通过检测变压器各个绕组的幅频响应特性,并对检测结果进行纵向或横向比较,根据幅频响应特性的变化程度,判断变压器绕组可能发生的变形情况。
1、主要技术特点
采用扫频法对变压器绕组特性进行测量,不对变压器吊罩、拆装的情况下,通过检测各绕组的幅频响应特性,对6kV及以上变压器,准确测量绕组的扭曲、鼓包或移位等变形情况。
测量速度快,对单个绕组测量时间3分钟以内。
频率精度非常高,精度高于0.001% 。
数字化频率合成,频率稳定性更高。
5000V电压隔离、充分保护测试电脑安全。
可同时加载9条曲线,各条曲线相关参数自动计算,自动诊断绕组的变形情况,给出诊断的参考结论。
分析软件功能强大,软件、硬件指标满足国标DL/T911-2004。
软件管理人性化、智能化程度高,设置好参数后,只需按一个键便可完成所有测量工作。
软件界面简洁直观,分析、存储、报告导出、打印等菜单一目了然。
现场接线简单、使用方便。
内置工控机,操作及携带更便捷。
12英寸大屏,图谱曲线更清晰。
设有两个USB接口。
二、主要技术指标(RZBX-FR新型电力设备“变压器绕组变形综合试验仪"解析和详细介绍)
测量速度:单相绕组1分钟-3分钟
输出电压:Vpp-25V
输入阻抗:1MΩ (响应通道内置50Ω匹配电阻)
扫频范围:100Hz-2MHz
频率精度: 0.001%
扫频方式:线性或对数,扫频间隔和点数可任意设置
曲线显示:幅频曲线
测量动态范围宽:-120dB~20dB
两个采集通道,一个采集激励信号,一个采集响应信号,用于计算传递函数
采集通道量化精度:14位
采集通道*大静态偏差:0.5%
每通道*大存储容量:64K样点
采集通道输入阻抗:1MΩ
供电电压:AC220V±10%
主机重量:4 kg
工控机双核CPU, 内存2G
固态硬盘(SSD):32G
Win7操作系统
显示屏:12.1英寸工业级显示屏,带触摸。
3、测试分析软件主要特色
采用windows平台,兼容Window 2000/Window XP/Windows7/windows8。
采用数据库保存测试数据,对测试数据的管理简洁方便。
可以同时加载 9 条曲线,各条曲线相关参数自动计算,自动诊断绕组的变形情况,给出诊断的参考结论。
软件管理功能强大,充分考虑现场使用的需要,测量数据自动存盘、自动导出生成Word版测试报告(需安装相应的Office软件)或JPG图片报告,方便用户出测试报告。
软件人性化特点明显,测量的各种条件多为选择项,不用在现场做很多的输入,使用更加方便。
软件智能化程度高,在输入、输出信号连接好之后,只需要按一个键就可以完成所有的测量工作。
软件界面简洁、直观、实用。
系统简明操作流程
采集器接地
采集器与变压器绕组接线
采集器与计算机接线
计算机开机
采集器上电
登录软件
录入信息
选择终止频率,调整测试参数
选择绕组
开始测试
更换测试绕组
选择绕组
开始测试
重复以上过程,直至完成所有绕组测试
保存数据
数据分析
报告导出
关闭软件
关闭采集器电源
拆开采集器与计算机的接线
拆开变压器接线
测试完成。
二 准备工作
注:使用说明书中涉及计算机及Windows操作系统的基本操作不在本使用说明书中,请参考相关的计算机书籍。
注:使用说明书中关于Windows操作系统的基本操作以Windows7操作系统为基础,其他Windows系统的操作与Windows 7操作的差别不在本使用说明书之内,请参考相关的计算机书籍。
三、试验接线(RZBX-FR新型电力设备“变压器绕组变形综合试验仪"解析和详细介绍)
3.1面板介绍
变压器绕组变形测试仪的面板如图1所示。
图1变压器绕组变形测试仪面板图
进行变压器绕组变形测试时的外部接线示意图如图2所示。仪器的 激励端 通过输入电阻(内阻)将扫频电压信号输入被试变压器绕组的首端,首端的电压信号输入仪器的 输入端 ,被试变压器绕组末端的电压信号输入到仪器 响应端 。变压器绕组变形测试仪的“接地"、“被试变压器"的外壳和铁芯一起接地。
3.2绕组的接线方式
图2变压器绕组变形测试的外部接线示意图
绕组变形频率响应测试的扫频信号建议从绕组的末端注入,首端输出,非被试绕组悬空。根据变压器的不同接线组别,绕组变形测试的接线方式也不同。
YN接线
扫频信号输入阻抗接于中性点O,扫频信号输出阻抗分别接在A、B、C上。这种测量方法,可以将非测量相上接收到的干扰信号由信号发生器上的低阻抗来吸收。如图3所示。
图3 YN接线
Y接线
由于中性点未引出,应按以下方式接线,如图4所示。
输入阻抗接于A,输出阻抗接在B测试。
输入阻抗接于B,输出阻抗接在C测试。
输入阻抗接于C,输出阻抗接在A测试。
图4 Y接线
内连接△接线
内连接Δ接线绕组的接线方式如图5所示。
输入阻抗接于c,输出阻抗接在a相,代表a相。
输入阻抗接于a,输出阻抗接在b相,代表b相。
输入阻抗接于b,输出阻抗接在c相,代表c相。
图5 内连接Δ接线
由于内连接Δ接线非测量的两个绕组串联后并联在回路中,理论上说对测试过程是有影响的。如果衰减超过10dB后,则可以认为非测量线圈的影响可以忽略。
外连接Δ接线
如果绕组解开测量的接线方式如图6所示。如果不解开连接,可以看作内连接Δ接线,接线方式如图7所示。
输入阻抗接于x,输出阻抗接在a相,代表a相。
输入阻抗接于y,输出阻抗接在b相,代表b相。
输入阻抗接于z,输出阻抗接在c相,代表c相。
图6外连接Δ接线
有平衡绕组的变压器
对于有平衡绕组的变压器,测试时必须解开接地。如图7所示。
图7 平衡绕组接线
四、系统测试(RZBX-FR新型电力设备“变压器绕组变形综合试验仪"解析和详细介绍)
4.1启动“绕组变形测试系统"程序
双击桌面上的“变压器绕组变形测试仪"图标,启动“变压器绕组变形测试系统"程序。
启动过程完成后,进入标题为“变压器绕组变形测试仪"的主程序界面。(双击屏幕左上角的小图标,便可切换至桌面。测试过程中请不要点击。)
软件主界面分为7个组成部分:
(A)测试曲线显示区
该区域显示测试曲线,横坐标为频率,纵坐标为dB值(幅频测试)或角度值(相频测试)。下方标签包括:
曲线类型标签:用于标识当前所显示的内容是“幅频曲线"还是“相频曲线"。 点击该标签,可以在两种类型间进行切换(需硬件支持)。
扫描模式标签:用于显示当前扫描模式是线性扫描还是对数扫描,点击该标签,可以在两种模式间切换。
起始频率标签:用于显示当前的扫描起始频率,点击该标签,可以在不同的起始频率间切换。
终止频率标签:用于显示当前的扫描终止频率。
扫描点数标签:用于显示当前扫描的总点数,点击该标签,可以在不同的点数间切换。
(B)状态显示区
状态显示区显示当前设备的工作状态。
(C)操作区
操作区有开始和终止
两个按钮,该按钮在测试中会根据使用状态轮流显示,停止状态时显示“start开始",开始状态时显示“stop停止"。
在按钮下方有当前状态显示标签,用于显示设备当前的状态:
“脱机状态":计算机工作与脱机状态,只能进行数据读取和打印等功能。
“设备连接":计算机与设备已经连接,可以进行测试。
“设备断开":计算机与设备断开,无法进行测试,一般需重新连接并重启软件。
(D)测试参数设置区
D区显示参数设置窗口,该窗口用于设置测试参数,分别可以设置绕组接法、待测绕组类别与编号、扫描终止频率等参数。
(E)曲线描述区
E区显示当前曲线的描述信息,所有标签的颜色代表了与之颜色对应的曲线的描述信息。
(F)数据选择区
右上角(F)为数据选择区,测试数据采用分级管理,**级为变电站名称,第二级为变压器名称,第三级为变压器的绕组类别和编号,*后一层为已经存在数据,数据名称采用“数据类型@测试时间"的方式显示。该部分显示的数据与(A)区所对应的标签内容相配合,当显示为“幅频曲线"时,数据选择区显示幅频曲线的测试结果,当显示为“相频曲线"时,数据选择区显示相频曲线的测试结果。
当显示为“幅频曲线"或“相频曲线"时,点击相应的数据,则测试结果显示在A区中。
(G)功能按钮区
功能按钮区(G)按钮会根据使用功能自动切换,动态显示。
“保存":用于保存当前的测试结果,
“DSA分析":用于进行相关性分析。
退出系统。
4.2频响法测试
环境与接线确认
系统接线全部按照3.2绕组的接线方式的要求进行
变压器分接位置调至阻抗*大档(**分接)
周围环境无强电磁和造影干扰
登录软件
双击桌面上的“变压器绕组变形测试仪"按钮,系统闪过欢迎界面后,系统进入测试界面,此时,如果设备未连接,系统会提示如下对话框:
当出现以上对话框时,一般是由于设备未连接所致,此时应先检查设备是否已经连接到计算机的USB接口上,检查设备电源是否已经打开。
录入信息
如果设备已经连接,则可以进入变压器信息录入界面(如下图),在对应的文本框中输入或选择相应的信息,点击保存按钮,系统进入测试界面。
信息录入时请参照变压器铭牌认真输入,所有的信息将自动与测试结果保存到一起,如果输入错误,可能会对报告内容造成影响。
扫描模式确认与修改
1、选择扫描模式
点击“终止频率"选择测试的终止频率,系统按照已经设定的扫描参数,自动将参数设置为设定的参数,参数主要包括起始频率、扫描模式、扫描点数,如需进行调整,可以在A区相应的参数标签上进行点击,则自动进行切换(当鼠标指针移动到可以变化的标签上时,标签自动变为绿色)。
2、更改默认信息
如希望重新调整默认设置信息,用鼠标右键点击“终止频率"按钮,弹出功能菜单,选择“模式设置",弹出信息设置窗口(如下图),可以对默认扫描信息进行调整,调整完毕后,重新启动软件,按照调整后的默认信息进行测试。
以上调整用于设置默认信息,信息以“终止频率"的值区分。在实际应用中,**次使用时按照相关规定进行调整,以后如果没有法规或特殊要求,一般不进行调整。
3、更改扫描参数
扫描参数的更改用于试验需要比较复杂的参数组合时,系统不带记忆功能,软件退出后自动恢复。
在开始扫描前,点击曲线显示区域(A)中的参数标签,可以对除终止频率以外的信息进行更改,更改采用循环调整方式进行。
扫描参数更改适用于单次对测量结果有要求或进行研究时,一般不需要进行调整。
测试
设置好基本的测试信息后,即可进行频响法的数据测量,点击“START开始" 按钮,系统自动完成频率扫描。在测试过程中,
按钮变成“STOP停止"
按钮,点击该按钮,则停止当前扫描,在测试过程中,在信号曲线显示区“单击"鼠标,则测试过程暂停,再次点击继续进行。
测试完成一项后,改变接线方式,同时改变软件上的设置信息,再次点击按钮,进行下一相的测量,重复以上的操作,直至完成所有的测量项目。
在试验过程中,鼠标在测试曲线显示区(A)双击,可以打开测试波形显示区,该区域包括波形显示以及输入电压峰峰值(红色)、响应电压峰峰值(黄色)以及放大倍率和横轴时间信息,该信息主要用于信号研究。
4.3相关性分析
在E区中的曲线自动分为三组,1-3为一组,4-6为一组,7-9为一组,每组曲线在组内进行相关性分析。点击“分析",系统会在左侧弹出报告显示窗口,该窗口显示目前的测试报告内容,操作者可再次对信息进行确认和录入,点击报告显示窗上的“导出"
,弹出保存对话框,可以对文件名、文件类型和保存路径进行设置。默认结果保存在D盘的“变压器绕组变形测试报告"中,文件名以“打印报告"+“打印时间"的形式存储。
4.4数据回显
本系统可以对已经存盘的数据进行回显,在F区依次选择电站名称、变压器名称、试验类别与时间、绕组类型与时间,即可将已经完成的测试结果调出。默认显示在**条曲线的位置,随选择结果的递增,数据依次向下显示。当曲线数量到达*大时(9条曲线)时,不再递增,此时,可以选择需要替换的曲线,继续进行递增替换。如发现某条曲线不需要进行分析时,可以在曲线描述信息(E)上点击鼠标右键,点击“清空曲线",则该条曲线自动从分析列表中剔除。
E区中的曲线共分为三组,1-3为一组,4-6为一组,7-9为一组,每组曲线在组内进行相关性分析。因此,需要保证用于分析的曲线在同一组别内,否则无法得到正确的分析结果。
选择好曲线后,点击“分析",系统会在左侧弹出报告显示窗口,其余与4.3描述操作一致。
4.5数据保存位置
数据保存到D盘文件夹下,文件夹层级为D:\频响测试结果\电站名称\变压器编号\试验类型与测试时间\相位信息与测试时间.TXT.
文件采用纯文本保存,文件格式为
第1行:变压器信息
第2行:试验信息
第3行:保留
第4行:保留
第5行以后为测试数据,数据格式为分贝数α相位角@频率....
4.6报告保存位置
报告保存到D盘文件夹下,文件夹层级为D:\ 变压器绕组变形测试报告\测试报告+打印时间.doc或测试报告+打印时间.jpg。
报告可能是WORD文档或者JPG图片,依据在保存时的选项而定。
新型电力系统是新型能源体系的重要组成和实现“双碳"目标的关键载体,其核心特征包括清洁低碳、安全可控、灵活高效、智能友好以及开放互动。中电联数据显示,截至24年底,我国以风电、太阳能发电为主的新能源发电装机规模达到14.5亿千瓦,第1次超过火电装机规模。24年,风电和太阳能发电合计新增装机3.6亿千瓦,占新增发电装机总容量的比重达到82.6%。行业分析认为,到25年,我国新能源总装机预计将达到15.3亿千瓦,配网分布式新能源接入将达到3亿千瓦,新能源汽车将达到5000万辆。
随着新能源占比的不断提升,电力系统转型面临更高的复杂性。首先是变化多、预测难,即电力系统的负荷和发电方式日益多样化,尤其是风能、太阳能等可再生能源波动性较大,导致电力供需变化频繁且难以准确预测。其次是接入多、调控难,即屋顶光伏、小型风电等分布式能源以及电动汽车等新型负荷的接入,使得电力系统的节点数量大幅增加,调控难度加大。再次是互动多、消纳难,即电力系统与用户之间的互动需求增加,但可再生能源的间歇性和不稳定性导致电力消纳困难,容易出现弃风、弃光现象。最后是资产多、管控难,即电力系统包括发电设备、输电线路、配电网络等,资产规模庞大,管理复杂,维护成本高。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。