LYFA-5000变频互感器测试仪快速高精度的测试能力
传统能源迭代升级是能源发展的一般规律,而能源绿色低碳转型是全球的普遍共识和一致行动。我国新能源发展具有丰富的资源优势,拥有多元化的投资主体,恰逢应对气候变化、实现“双碳"目标的时代机遇。十多年来,我国新能源实现了跃升发展,构建了*世界的新能源产业链,而且技术装备水平不断提高,其成长性、经济性不断增强,风光电均具备了与火电同台竞争的优势。党的18大以来,我国新能源实现了快速增长,年均增长28%。“十三五"新能源发展远超预期,2020年装机容量达到5.3亿千瓦,是国家规划目标的1.66倍。
进入“十四五",我国赋予新能源“主体能源"的战略定位,并制定了清晰的战略目标。2021年,国务院印发《关于2030年前碳达峰行动方案的通知》,明确将“构建新能源占比逐渐提高的新型电力系统,推动清洁电力资源大范围优化配置";中共中央、国务院印发《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》,明确将“构建以新能源为主体的新型电力系统,提高电网对高比例可再生能源的消纳和调控能力"。同时,国家也确定了各阶段的主要战略目标:到2025年,非化石能源消费比重达到20%左右;到2030年,非化石能源消费比重达到25%左右,风电、太阳能发电总装机容量达到12亿千瓦以上;到2060年,非化石能源消费比重达到80%以上,碳中和目标顺利实现。
第1章 装置特点与参数(LYFA-5000变频互感器测试仪快速高精度的测试能力)
是在传统基于调压器、升压器、升流器的互感器伏安特性变比极性综合测试仪基础上,广泛听取用户意见、经过大量的市场调研、深入进行理论研究之后研发的新一代革新型CT、PT测试仪器。装置采用高性能DSP和FPGA、*制造工艺,保证了产品性能稳定可靠、功能完备、自动化程度高、测试效率高、在国内处于*水平,是电力行业用于互感器的专业测试仪器。
1.1 主要技术特点
功能全,既满足各类CT(如:保护类、计量类、TP类)的励磁特性(即伏安特性)、变比、极性、二次绕组电阻、二次负荷、比差以及角差等测试要求,又可用于各类PT电磁单元的励磁特性、变比、极性、二次绕组电阻、比差等测试。
现场检定电流互感器无需标准电流互感器、升流器、负载箱、调压控制箱以及大电流导线,使用极为简单的测试接线和操作实现电流互感器的检定,极大的降低了工作强度和提高了工作效率,方便现场开展互感器现场检定工作。
可精转测量变比差与角差,比差*大允许误差±0.05%,角差*大允许误差±2min,能够进行0.2S级电流互感器的测量,变比测量范围为1~40000。
基于*变频法测试CT/PT伏安特性曲线和10%误差曲线,输出*大仅180V的交流电压和12Arms(36A峰值)的交流电流,却能应对拐点高达60KV的CT测试。
自动给出拐点电压/电流、10%(5%)误差曲线、准确限值系数(ALF)、仪表保安系数(FS)、二次时间常数(Ts)、剩磁系数(Kr)、饱和及不饱和电感等CT、PT参数。
测试满足GB1208(IEC60044-1)、GB16847(IEC60044-6) 、GB1207等各类互感器标准,并依照互感器类型和级别自动选择何种标准进行测试。
测试简单方便,一键完成CT直阻、励磁、变比和极性测试,而且除了负荷测试外,CT其他各项测试都是采用同一种接线方式。
全中文动态图形界面,无需参考说明书即可完成接线、设置参数:动态显示参数设置,根据当前所选的试验项目自动显示其相关参数;动态显示帮助接线图,根据当前所选试验项目,显示对应的接线图。
5.7寸图形透反式LCD,阳光下清晰可视。
采用旋转光电鼠标操作,操作简单,快捷方便,极易掌握。
面板自带打印机,可自动打印生成的试验报告。
测试结果可用U盘导出,程序可用U盘升级,方便快捷。
装置可存储1000组测试数据,掉电不丢失。
配有后台分析软件,方便测试报告的保存、转换、分析,可以用于试验数据的对比、判断与评估。
易于携带,装置重量<9Kg。
1.2 装置面板说明(LYFA-5000变频互感器测试仪快速高精度的测试能力)
装置面板结构如右图接线端子从左向右:
·红黑S1、S2端子:试验电源输出
·红黑S1、S2端子:输出电压回测
·红黑P1、P2端子:感应电压测量端子
·液晶显示屏:中文显示界面
·微型打印机:打印测试数据、曲线
·旋转鼠标:输入数值和操作命令
1.3 主要技术参数(LYFA-5000变频互感器测试仪快速高精度的测试能力)
LYFA-5000 | ||
测试用途 | CT, PT | |
输出 | 0~180Vrms,12Arms,36A(峰值) | |
电压测量精度 | ±0.1% | |
CT变比 测量 | 范围 | 1~40000 |
精度 | ±0.05% | |
PT变比 测量 | 范围 | 1~40000 |
精度 | ±0.05% | |
相位测量 | 精度 | ±2min |
分辨率 | 0.5min | |
二次绕组电阻测量 | 范围 | 0~300Ω |
精度 | 0.2%±2mΩ | |
交流负载测量 | 范围 | 0~1000VA |
精度 | 0.2%±0.02VA | |
输入电源电压 | AC220V±10%,50Hz | |
工作环境 | 温度:-10οC~50οC, 湿度:≤90% | |
尺寸、重量 | 尺寸365 mm×290 mm×153mm 重量<10kg |
第2章 用户接口和操作方法(LYFA-5000变频互感器测试仪快速高精度的测试能力)
2.1 电流互感器试验
在参数界面,用 旋转鼠标切换光标到类型栏,选择互感器类型为CT。
2.1.1 试验接线
试验接线步骤如下:
第1步:根据表2.1描述的CT试验项目说明,依照图2.1或图2.2进行接线。
表2.1 CT试验项目说明
电阻 | 励磁 | 变比 | 负荷 | 说明 | 接线图 |
√ | 测量CT的二次绕组电阻 | 图2.1,但一次侧可以不接 | |||
√ | √ | 测量CT的二次绕组电阻、励磁特性 | 图2.1,但一次侧可以不接 | ||
√ | √ | 测量CT的二次绕组电阻,检查CT变比和极性 | 图2.1, | ||
√ | √ | √ | 测量CT的二次绕组电阻、励磁特性,检查CT变比和极性 | 图2.1 | |
√ | 测量CT的二次负荷 | 图2.2, |
第2步:同一CT其他绕组开路,CT的一次侧一端要接地,设备也要接地。
第3步:接通电源,准备参数设置。
2.1.2 参数设置
试验参数设置界面如图2.3。
参数设置步骤如下:
用 旋转鼠标 切换光标,选择要进行的试验项目,当光标停留在某个试验项目时,屏幕显示与该试验项目相关的参数设置;当光标离开试验项目时,屏幕显示所选试验项目所对应的接线图。
可设置的参数如下:
(1)编号:输入本次试验的编号,便于打印、保存的管理与查找。
(2)额定二次电流:电流互感器二次侧的额定电流,一般为1A和5A。
(3)级别:被测绕组的级别,对于CT,有P、TPY、计量、PR、PX、TPS、TPX、TPZ等8个选项。
(4)当前温度:测试时绕组温度,一般可输入测试时的气温。
(5)额定频率:可选值为:50Hz或60Hz。
(6)*大测试电流:一般可设为额定二次电流值,对于TPY级CT,一般可设为2倍的额定二次电流值。对于P级CT,假设其为5P40,额定二次电流为1A,那么*大测试电流应设5%*40*1A=2A;假设其为10P15,额定二次电流为5A,那么*大测试电流应设10%*15*5A=7.5A。
如果用户希望看到以下结果,需要准确设置基本参数(建议用户设置)。
(1)匝比误差、比值差和相位差
(2)准确计算的极限电动势及其对应的复合误差
(3)实测的准确限值系数、仪表保安系数和对称短路电流倍数
(4)实测的暂态面积系数、峰瞬误差、二次时间常数
对于不同级别的CT,参数的设置也不同,见表2.2。
表2.2 CT参数描述
参数 | 描述 | P | TPY | 计量 | PR | PX | TPS | TPX | TPZ |
额定一次电流 | 用于计算准确的实际电流比 | √ | √ | √ | √ | √ | √ | √ | √ |
额定负荷, 功率因数 | 铭牌上的额定负荷,功率因数为0.8或1 | √ | √ | √ | √ | √ | √ | √ | √ |
√ | √ | √ | √ | √ | √ | √ | √ | ||
额定准确限值系数 | 铭牌上的规定,默认:10。用于计算极限电动势及其对应的复合误差 | √ | |||||||
额定对称短路电流系数 | 铭牌上的规定,默认:10。用于计算极限电动势及其对应的峰瞬误差 | √ | √ | √ | √ | ||||
一次时间常数 | 默认:100ms | √ | √ | √ | |||||
二次时间常数 | 默认:3000ms | √ | √ | ||||||
工作循环 | C-t1-O或C-t1-O-tfr-C-t2-O,默认:C-t1-O循环 | √ | √ | ||||||
t1 | 第1次电流通过时间,默认:100ms | √ | √ | ||||||
tal1 | 第1次通流保持准确限值的时间,默认:40ms | ||||||||
tfr | 第1次打开和重合闸的延时,默认:500ms。选择C-t1-O-tfr-C-t2-O循环才显示 | √ | √ | ||||||
t2 | 第2次电流通过时间,默认:100ms。选择C-t1-O-tfr-C-t2-O循环才显示 | √ | √ | √ | |||||
tal2 | 第2次通流保持准确限值的时间,默认:40ms 选择C-t1-O-tfr-C-t2-O循环才显示 | √ | √ | ||||||
额定仪表保安系数 | 铭牌上的规定,默认值:10。 用于计算极限电动势及其对应的复合误差 | √ | |||||||
额定计算系数 | √ | ||||||||
额定拐点电势Ek | √ | ||||||||
Ek对应的Ie | √ | ||||||||
面积系数 | √ | ||||||||
额定Ual | 额定等效二次极限电压 | √ | |||||||
Ual对应的Ial | √ |
第五步: 选择右边的开始按钮进行试验。
2.1.3 试验结果
试验结果页,界面分别如图2.4。
对于不同级别的CT和所选的试验项目,试验结果也不同,见表2.3。
表2.3 CT试验结果描述
试验结果 | 描述 | P | TPY | 计量 | PR | PX | TPS | TPX | TPZ | |
负荷 | 实测负荷 | 单位:VA,CT二次侧实测负荷 | √ | √ | √ | √ | √ | √ | √ | √ |
功率因数 | 实测负荷的功率因数 | √ | √ | √ | √ | √ | √ | √ | √ | |
阻抗 | 单位:Ω,CT二次侧实测阻抗 | √ | √ | √ | √ | √ | √ | √ | √ | |
电阻 | 电阻(25℃) | 单位:Ω,当前温度下CT二次绕组电阻 | √ | √ | √ | √ | √ | √ | √ | √ |
电阻(75℃) |
| √ | √ | √ | √ | √ | √ | √ | √ | |
励磁 | 拐点电压和拐点电流 | 单位:分别为V和A,根据标准定义,拐点电压增加10%时,拐点电流增加50%。 | √ | √ | √ | √ | √ | √ | √ | √ |
不饱和电感 | 单位:H,励磁曲线线性段的平均电感 | √ | √ | √ | √ | √ | √ | √ | √ | |
剩磁系数 | 剩磁通与饱和磁通的比值 | √ | √ | √ | √ | √ | √ | √ | √ | |
二次时间常数 | 单位:s,CT二次接额定负荷时的时间常数 | √ | √ | √ | √ | √ | √ | √ | √ | |
极限电动势 | 单位:V,根据CT铭牌和75℃电阻计算的极限电动势 | √ | √ | √ | √ | √ | √ | |||
复合误差 | 极限电动势 | √ | √ | √ | √ | |||||
峰瞬误差 | 极限电动势 | √ | √ | √ | ||||||
准确限值系数 | 实测的准确限值系数 | √ | √ | |||||||
仪表保安系数 | 实测的仪表保安系数 | √ | ||||||||
对称短路电流倍数Kssc | 实测的对称短路电流倍数 | √ | √ | √ | √ | |||||
暂态面积系数 | 实际的暂态面积系数 | √ | √ | √ | ||||||
计算系数Kx | 实测的计算系数 | √ | ||||||||
额定拐点电势Ek | √ | |||||||||
Ek对应的Ie | 额定拐点电势对应的实测励磁电流 | √ | ||||||||
额定Ual | 额定等效二次极限电压 | √ | ||||||||
Ual对应的Ial | 额定等效二次极限电压对应的实测励磁电流 | √ | ||||||||
误差曲线 | 5%(10%)误差曲线 | √ | √ | √ | √ | √ | √ | √ | ||
变比 | 变比 | 额定负荷下的实际电流比 | √ | √ | √ | √ | √ | √ | √ | √ |
匝数比 | 被测试的二次绕组与一次绕组的实际匝比 | √ | √ | √ | √ | √ | √ | √ | √ | |
比值差 | 额定负荷下的电流误差 | √ | √ | √ | √ | √ | √ | √ | √ | |
相位差 | 额定负荷下的相位差 | √ | √ | √ | √ | √ | √ | √ | √ | |
极性 | CT一次和二次的极性关系,有同极性/-(减极性)和反极性/+(加极性)两种 | √ | √ | √ | √ | √ | √ | √ | √ | |
匝比误差 | 实测匝数比与额定匝比的相对误差 | √ | √ | |||||||
标准误差 | 额定负荷、下限负荷下,国标检验电流点的电流误差、相位误差表 | √ |
2.2 电压互感器试验
在参数界面,用 旋转鼠标切换光标到类型栏,选择互感器类型为PT。
2.2.1 试验接线
试验接线步骤如下:
第1步:根据表2.4描述的PT试验项目说明,依照图2.7或图2.8进行接线。
表2.4 PT试验项目说明
电阻 | 励磁 | 变比 | 说明 | 接线图 |
√ | 测量PT的二次绕组电阻 | 图2.7,一次侧必须断开 | ||
√ | √ | 测量PT的二次绕组电阻、励磁特性 | 图2.7,一次侧必须断开,且一次侧高压尾必须接地 | |
√ | 检查PT变比和极性 | 图2.8 |
第2步:同一PT其他绕组开路。
第3步:接通电源,准备参数设置。
2.2.2 参数设置
PT的试验参数设置界面如图2.5。
参数设置步骤如下:
用 旋转鼠标 切换光标,选择要进行的试验项目,当光标停留在某个试验项目时,屏幕显示与该试验项目相关的参数设置;当光标离开试验项目时,屏幕显示所选试验项目所对应的接线图。
可设置的参数如下:
(1)编号:输入试验试验编号。
(2)额定二次电压:电压互感器二次侧的额定电压。
(3)级别:被测绕组的级别,有P、计量等2个选项。
(4)当前温度:测试时绕组温度,一般可输入当时的气温。
(5)额定频率:可选值为:50Hz或60Hz。
(6)很大测试电压:试验时设备输出的很大工频等效电压。
(7)很大测试电流:试验时设备输出的很大交流电流。
第四步: 选择右边的开始按钮进行试验。
2.2.3 试验结果
试验结果页,如图2.6。
对于不同级别的PT和所选的试验项目,试验结果也不同,见表2.5。
表2.5 PT试验结果描述
试验结果 | 描述 | P | 计量 | |
电阻 | 电阻(25℃) | 单位:Ω,当前温度下的电阻 | √ | √ |
电阻(75℃) | 单位:Ω,参考温度下的电阻值,温度可修改 | √ | √ | |
励磁 | 拐点电压和拐点电流 | 单位:分别为V和A,根据标准定义,拐点电压增加10%时,拐点电流增加50%。 | √ | √ |
变比 | 变比 | 额定负荷或实际负荷下的实际电流比 | √ | √ |
匝数比 | 被测试的二次绕组与一次绕组的实际匝比 | √ | √ | |
比值差 | 额定负荷或实际负荷下的电流误差 | √ | √ | |
相位差 | 额定负荷或实际负荷下的相位差 | √ | √ | |
极性 | PT一次和二次的极性关系,有同极性/-(减极性)和反极性/+(加极性)两种 | √ | √ |
2.3自检页
自测界面如图2.8。在万用表帮助下,自测功能可用于检查设备是否损坏,测量电路是否正常。
2.3.1 参数设置
自测测试所需的参数如下表:
表2.6 自检测试参数
参数 | 描述 |
测试电流 | 需要装置输出的电流,有效值范围:1mA~5A |
测试电压 | 需要装置输出的电压,有效值范围:1V~100V |
测试频率 | 需要装置输出电压或电流的频率,范围:0~50Hz |
测试电流或测试电压设置后,设置测试频率,装置将输出对应频率的电压或电流,并显示检测到的实际电压或电流。在选择电压后,如果负载太小,导致实际电流有效值大于5A,则显示过载信息。在选择电流后,如果负载太大,导致实际测试电压有效值大于100V,则也会显示过载信息。
2.3.2 接线方法
·选择电压测试时,将S1短接另一个S1,S2短接另一个S2。用万用表电压档测量S1和S2之间的电压,若与实际电压相符,说明设备能够输出电压且电压测量环节正常。
·电流测试时,将电源输出的S1、S2端子短接。电压回测的S1、S2不接。可在输出的S1和S2之间串入万用表电流档,若万用表测量的电流与实际电流相符,说明设备能够正常输出电流且电流测量环节正常。
2.4功能按钮
2.4.1 参数页功能按钮
(1).系统工具
系统工具界面,如图2.11。在该界面中可以进行时间校对、系统升级等操作。其中:调试用于出厂调试,升级用于软件界面的升级。
(2).帮助
(3)打印
用户可以打印当前测试结果,此报告可做为现场试验的原始记录。
2.4.2 结果页功能按钮
(1)、励磁曲线
在图2.4或图2.6的测量结果页面,选择励磁结果,将出现励磁曲线界面,如图2.13:
(2)、励磁数据
在图2.13的励磁曲线页面,选择励磁数据将显示励磁数据界面,如图2.14:
在上图中可以显示三种形式的励磁数据:
实测:仪器升压过程中实际捕捉的电压、电流序列;
取整:对实测的励磁数据按电流取整后的结果显示,10mA以下按1mA递增、10mA~100mA以上按5mA递增、100mA以上按0.1A递增,取整的结果便于数据记录、比对;
特定:可以显示任意特定电流点的励磁数据;
(3)、5%、10%误差曲线
只有保护级的互感器(包括暂态保护级)才有5%、10%的误差曲线与误差数据;在CT设置中选定为P/PR/PX/TPx的互感器,在试验结果图2.4界面中,选择误差结果将显示5%误差曲线,如图2.15:
在图2.15中,还可以选择显示10%的误差曲线。保护互感器的10%误差曲线是10%误差数据的图形化显示,其含义是相同的,其含义为互感器复合误差不大于10%时,其二次负荷与过流倍数的关系曲线。5%的误差曲线是互感器复合误差不大于5%时,其二次负荷与过流倍数的关系曲线。
(4)、5%、10%误差数据
在图2.15中,选择误差数据将显示5%、10%的误差数据,如图2.16所示:
(5)、比差、角差表
只有测量级的互感器才有比差、角差结果表;在CT设置中选绕组级别为“计量"的互感器,且测试项目选择了“误差"项目的才会有比差、角差表。在图2.4 CT测试结果界面中,选择误差结果,将出现比差、角差表,如图2.17:
上图中显示了互感器分别在额定负荷与下限负荷下的比差、角差表,额定负荷是在CT设置页面中,下限负荷规定为25%的额定负荷。
一、产品简介
发电厂与变电站的高压电能计量装置,以及大量用户的电能计量装置,关系到发电、送电、供电及用户多方的利益。为保证计量准确,必须按照SD109《电能计量装置检验规程》和DL/T448-2000《电能计量装置技术管理规程》进行检验。
我公司的LYFA1000电流互感器现场校验仪是以优异测试技术,大规模电子线路设计以及符合国家相关规程研制出来的。它解决了现场检定电流互感器、电压互感器工作强度大、操作繁琐问题,同时该产品性能可靠、功能强大。
二、特点
1、具有递推法测量电流互感器误差功能,方便现场开展计量装置现场检定工作。
2、现场检定电流互感器无需标准电流互感器、升流器、负载箱、调压控制箱以及大电流导线,使用极为简单的测试接线和操作实现电流互感器的检定,极大的降低了工作强度和提高了工作效率,方便现场开展互感器现场检定工作。
3、内部具有相当于被测电流互感器同变比的标准电压互感器,其准确度可以达到0.05级,准确的测量出被测电流互感器的变比和空载误差。然后结合阻抗与导纳的测试结果推算出互感器的误差。
4、采用接近工频的异频功率电源测试,防止现场工频电磁辐射和串联干扰。
5、测量范围宽,可以至5A/5A~31500A/5A或5A/1A~6300A/1A。
6、具有电流互感器变比、二次绕组内阻测试功能。
7、采用800×600高分辨率大屏幕TFT彩色液晶触摸显示,具有人性化的界面及操作设计,使用触摸屏辅助操作,使操作变的更加方便、快捷。
8、采用精准的软件算法,测量数据的准确性进一步提高。
9、具有智能判断外接线状况,提示接线错误、变比、极性错误等。
10、自动对测试数据进行化整,并判断是否超差,超差数据显示橙色,并且窗口右下角显示超差,对互感器的数据特性直观明了。
11、国内开创同时可以测试电压互感器的变比和极性功能。
12、直接出具现场检定结论,合格或超差。
13、大规模存贮器可存储现场测试数据多达1000条。
14、采用RS232或USB接口连接计算机打印数据证书。
15、采用工程塑料模具机箱防震、防压,保障现场操作人员的安全和设备安全。
三、主要性能技术指标
1、电流互感器误差测量部分
①整机准确度:被测电流互感器误差限值的1/3
②测试范围:5A/5A~31500A/5A或5A/1A~6300A/1A
二次电流为5A的互感器额定一次电流范围 | |||||||
5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 |
50 | 60 | 75 | 80 | 100 | 120 | 150 | 160 |
200 | 250 | 300 | 315 | 400 | 500 | 600 | 630 |
750 | 800 | 1000 | 1200 | 1250 | 1500 | 1600 | 2000 |
2500 | 3000 | 3150 | 3200 | 4000 | 5000 | 6000 | 6300 |
二次电流为1A的互感器额定一次电流范围 | |||||||
5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 |
50 | 60 | 75 | 80 | 100 | 120 | 150 | 160 |
200 | 250 | 300 | 315 | 400 | 500 | 600 | 630 |
750 | 800 | 1000 | 1200 | 1250 | 1500 | 1600 | 2000 |
2500 | 3000 | 3150 | 3200 | 4000 | 5000 | 6000 | 6300 |
注:二次电流为1A的电流互感器,通过等安匝测量方法变比可至31500A/1A。
其它末在表中出现的电流互感器变比的测试方法如下:
使用等安匝法测试电流互感器,例如:需测试1000A/5A的互感器,请您将仪器配套的测试线将被测电流互感器穿心两匝,然后仪器中电流互感器测试界面中的一次电流输为500A即可。此种测试方法不影响互感器测试数据的有效性。
同理其它变比使用以下处理方法:
额定一次(A) | 穿心匝数 | 仪器一次电流(A) |
80 | 2 | 40 |
120 | 2 | 60 |
8000 | 2 | 4000 |
12000 | 2 | 6000 |
③被测电流互感器工作范围: 1%~200%
④二次负荷:2.5VA~300VA 、COSφ=0.1~1.0
⑤被检电流互感器准确度范围:1.0、0.5、0.5S、0.2及0.2S
⑥电阻、导纳测量误差≤5.0%
测量范围:
R: 0.00Ω~20.0Ω
Y: 0.000mS~100.0mS
2、电压互感器校验仪部分变比测试范围:1KV-500kv
3、仪器消耗功率:20VA
4、仪器准确度等级:0.05S级
5、*大外形尺寸(cm):L460´W375´H183
6、重量(kg):10.0
四、操作指南
面板简介,如下图:
五、主界面介绍
主界面的显示如右图:
①规程测试:点击此图标将进入电流互感器误差规程检定;
②直流电阻:点击此图标将进入离线状态下的电流互感器的二次绕组内阻测量;
③变比测试:点击此图标将进入电流互感器的变比测量;
④任意点测试:点击此图标将进入电流互感器的任意点的误差测试;
⑤PT测试:点击此图标将显示常用的测试线路图、常见问题的处理方法以及判断结论的方法;
⑥数据中心:点击此图标将显示浏览仪器内部存储器中的各测试记录,可以进行数据的浏览以及删除、通讯等操作;
⑦系统设置:点击此图标将可以设置系统时间和液晶对比度;
⑧出厂设置:点击此图标输入密码生产厂家可以设置仪器内部参数。
注1:时实显示系统时间及日期!
为此,今年以来,国网兰州供电公司聚焦客户侧储能多元化、智能化特点,依托政府主导的保供协调机制,成立工作专班,主动对接中国铁塔与移动、电信、联通三大运营商,讨论通信基站储能电池参与需求响应的可行性、安全性、经济性,挖掘基站备用储能可调潜力。同时,该公司结合通信基站的供电可靠性要求及其运行监控网络,对移动、铁塔相关基站开展现场调研与客户侧负荷控制改造、测试,深化新型电力负荷管理系统功能应用,确定基站在不同通信负荷下的动态备用需求,研究其聚合构建形成虚拟电厂,参与电网系统调控的能力,进一步实现“通信配套"转化成“社会配套",最终于3月2日与中国移动、中国联通完成电力需求响应协议签署,持续推进基于通信基站储能的虚拟电厂试点示范工程建设。
根据测算,针对通信运营商,当参与电网需求响应时,全市所有基站每次响应可节省电费成本3.48万元;在实施储能能源管理时,结合其智能动环监控单元控制,全市所有基站每次充放可节省电费成本3.99万元,考虑其电池寿命,每月充放5次则每年可节省电费成本239.4万元。对供电企业,当全量基站参与需求响应时,可在负荷高峰时缓解电网负荷约20万千瓦,相当于5万户居民总负荷。按照客户每增加1千瓦,电网侧需配套投资2000元测算,20万千瓦负荷参与需求响应可节省电网投资4亿元。
下一步,国网兰州供电公司将践行绿色发展理念,充分发挥各自领域优势,在通讯基站供电规范化、电力需求响应、杆塔资源共享共建、通信技术服务等方面,深入开展广泛合作,扩大需求响应规模,重点推进基站储能虚拟电厂建设,加快储能负荷参与需求响应,实现“电网有需求、基站有能力",支撑用电信息数据共享和需求响应能力建设,并组织开展5G基站参与电力辅助服务市场,助力“双碳"目标实现。同时,该公司还将重点加强对虚拟电厂分层分区分域动态机制等课题的研究,加快5G通信、区块链、储能等关键性技术的深度融合,为“十四五"期间兰州市构建新型电力系统做出更多积极探索。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。